Hydraulic pumps, one of the more common mechanical applications of hydraulic technology, use fluid to push an arm a set distance forwards and backwards (or up and down). One example is the mechanical arms of a digger or other ground-working machinery. A hydraulic pump is perfect for this use, as the machinery works using the set distances between the components of the arms.
A hydraulic gear motor uses fluid to power movement for a much longer distance (or to put it another way, for an unspecified length of time). The motor works by running fluid through a chamber containing two cogs. One is linked to the drive shaft and transfers the power to the component that needs to move, and the other is idle, existing only to complete the mechanism. The same fluid is pumped through the motor chamber for as long as the power is needed, and it works in a similar fashion to an electric motor, but is much smaller and can be used in places where electricity is not safe or viable to use. It is a natural development of the waterwheel that was commonplace in the UK during the Industrial Revolution, powering cotton mills, woodworking and even bellows for blacksmiths forges.
A hydraulic gear motor is more appropriate than a pump for any piece of machinery that needs continuous power in a simple mechanism; a series of hydraulic pumps, arms and cogs can be used to create continuous power, but the resulting apparatus is bulky and made up of several components, which increases the likelihood of mechanical failure. A hydraulic motor, by comparison, can be very small and portable, meaning it is ideal for any application that is a long distance from traditional power sources and remote areas of the planet where other forms of energy are not viable. They are also reasonably simple in construction, so parts and maintenance are not an issue.
Hydraulic motors are ideal for use underwater and in dangerous places like mines and gas works, where the spark from an electric or petrol motor poses a serious fire risk. They are also good for any task where the motor is operated remotely, as the fluid can be pumped a long distance to the motor using comparatively little power and the only connection needed is piping, compared to more expensive electrical cable for running a remote electric motor. What is the most ingenious application of a hydraulic motor you have ever seen? Let us know in the comments below.